Drosophila Tey represses transcription of the repulsive cue Toll and generates neuromuscular target specificity.
نویسندگان
چکیده
Little is known about the genetic program that generates synaptic specificity. Here we show that a putative transcription factor, Teyrha-Meyhra (Tey), controls target specificity, in part by repressing the expression of a repulsive cue, Toll. We focused on two neighboring muscles, M12 and M13, which are innervated by distinct motoneurons in Drosophila. We found that Toll, which encodes a transmembrane protein with leucine-rich repeats, was preferentially expressed in M13. In Toll mutants, motoneurons that normally innervate M12 (MN12s) formed smaller synapses on M12 and instead appeared to form ectopic nerve endings on M13. Conversely, ectopic expression of Toll in M12 inhibited synapse formation by MN12s. These results suggest that Toll functions in M13 to prevent synapse formation by MN12s. We identified Tey as a negative regulator of Toll expression in M12. In tey mutants, Toll was strongly upregulated in M12. Accordingly, synapse formation on M12 was inhibited. Conversely, ectopic expression of tey in M13 decreased the amount of Toll expression in M13 and changed the pattern of motor innervation to the one seen in Toll mutants. These results suggest that Tey determines target specificity by repressing the expression of Toll. These results reveal a mechanism for generating synaptic specificity that relies on the negative regulation of a repulsive target cue.
منابع مشابه
EGFR signaling modulates synaptic connectivity via Gurken.
Synaptic target selection is critical for establishing functional neuronal circuits. The mechanisms regulating target selection remain incompletely understood. We describe a role for the EGF receptor and its ligand Gurken in target selection of octopaminergic Type II neurons in the Drosophila neuromuscular system. Mutants in happyhour, a regulator of EGFR signaling, form ectopic Type II neuromu...
متن کاملWnt4 Is a Local Repulsive Cue that Determines Synaptic Target Specificity
How synaptic specificity is molecularly coded in target cells is a long-standing question in neuroscience. Whereas essential roles of several target-derived attractive cues have been shown, less is known about the role of repulsion by nontarget cells. We conducted single-cell microarray analysis of two neighboring muscles (M12 and M13) in Drosophila, which are innervated by distinct motor neuro...
متن کاملHox Function Is Required for the Development and Maintenance of the Drosophila Feeding Motor Unit.
Feeding is an evolutionarily conserved and integral behavior that depends on the rhythmic activity of feeding muscles stimulated by specific motoneurons. However, critical molecular determinants underlying the development of the neuromuscular feeding unit are largely unknown. Here, we identify the Hox transcription factor Deformed (Dfd) as essential for feeding unit formation, from initial spec...
متن کاملEGFR signaling regulates synaptic connectivity via Gurken
Naylor, Sarah, "EGFR signaling regulates synaptic connectivity via Gurken" (2011). All Theses and Dissertations (ETDs). Paper 625. The synapse is the essential unit of neural function. It is critical to understand how synapses form during development, how they are maintained throughout the life of an organism, and how their structure and function are affected by neural activity. An understandin...
متن کاملA Ubiquitin-Proteasome Pathway Represses the Drosophila Immune Deficiency Signaling Cascade
BACKGROUND The inducible production of antimicrobial peptides is a major immune response in Drosophila. The genes encoding these peptides are activated by NF-kappaB transcription factors that are controlled by two independent signaling cascades: the Toll pathway that regulates the NF-kappaB homologs, Dorsal and DIF; and the IMD pathway that regulates the compound NF-kappaB-like protein, Relish....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 13 شماره
صفحات -
تاریخ انتشار 2010